Rohan Panicker

🌐 rn0h.github.io | 📞 (206) 371-5936 | 🗘 github.com/RN0H | 🛅 linkedin.com/in/rohpan | 🖂 rohpan@uw.edu

EDUCATION

University of Washington Seattle		September 2023 - June 2025
- Master of Science in Mechanical Engineering with concentration in Robotics. Controls and Artificia		rtificial Intelligence
- Coursework : Artificial Intellig	gence, Control Theory, Deep Learning, Reinforcement Learning.	
MIT World Peace University, Ind	dia	July 2017 - July 2021
- B.Tech in Mechanical Engine	ering.	
- Coursework: Mechatronics,	Matlab/Python, Kinematics and Dynamics, Data-Structures and a	Algorithms.
SKILLS		
• Programming Languages :	Python, C, C++, Rust, MATLAB.	
• Libraries and Frameworks:	ROS, ROS2, Numpy, flask, OpenCV, Pytorch, GStreamer, Panda	is, Isaac Gym, PyBullet, MuJoCo, CUDA
Software development tools	nt tools: Git, Jira, Docker, Kubernetes, CMake, AWS	
 Embedded Systems: 	Raspberry Pi, NVIDIA Jetson, STM32F4 series, NXP LPC5500 se	eries, ODROID XU4.
Technical Skills :	Signal Processing, Statistical Modelling, Cluster Analysis, Data	Analysis and Visualization
WORK EXPERIENCE		
Robotics Co-op	Amazon Robotics	September 2024 - March 2025
Integrated Vision-Language I	Models with mobile robots for task and motion planning using A	WS.
• Developed a robot-agnostic software wrapper using AWS Bedrock and Lambda for multi-robot collaboration and human-robot		
interaction for amnesty in warehouse operations, resulting in an accepted paper for an internal conference.		
 Actively collaborated with er 	igineers and scientists on robotic teleoperation, manipulation ar	nd autonomy projects.
Summer Intern	Global Health Labs	June 2024 - September 2024
• Researched color spaces, particularly YUV channels, to develop computer vision and machine learning algorithms for cropping		
and detecting regions of interest of medical images using a low-cost embedded system with limited floating-point precision.		
Contributed to camera select	tion and design of a resource-constrained test-kit reader.	Contorphon 2022 June 2024
Graduate Student Researcher	RODOTICS Learning Lab	September 2023 - June 2024
 Accepted paper for the ICRA 2024 workshop on dynamics learning for on-road autonomy. Conducted field testing, data collection and created anomaly detection methods for safe off-road autonomy involving a MuSHR. 		
wheeled robot and a Unitree-A1 guadruped.		
Embedded Software Engineer	TATA Advanced Systems Limited (TASL)	lune 2022 - July 2023
 Trained and deployed a YOL)v8 for object detection and tracking on a camera-based gimbal	system.
Enhanced object tracking by mitigating occlusion through Kalman filter-based sensor fusion of ontical flow and IMI data		
and improved gimbal stabilization accuracy by 80% using model predictive control		
and improved grinbal stabilization accuracy by 60% using model predictive control.		
• Implemented an end to end perception pipeline for processing mermai images and LiDAR data using Opency and Gstreamer.		
Actively led sensor selection	and eliminated expensive third-party software solutions, earnin	g a Spot Award.
Control Systems and Perception	engineer Research and Development Establishment Engir	neers lab July 2021 - February 2022
 Created a dataset using moti 	on capture of human locomotion for designing a control system	of a lower limb exoskeleton.
 Led a team of four in develop 	ping a budget-friendly adjustable ankle exoskeleton that reduce	es energy expenditure by 17% .
PROJECTS		
Reinforcement Learning for	Quadruped Locomotion and Manipulation	
• Trained quadrupeds in Isaac	gym for locomotion and handstand using Proximal Policy Optimi	ization with curriculum learning.
3D Mapping for indoor autonomous navigation		
 Improved 3D point cloud mapping speed by 25% by merging the NDT and ICP point cloud registration algorithm with EKF. 		
TinyML and Object detection and tracking using STM32		
 Used CIFAR-10 dataset for in 	lage classification on a STM32F429 using the X-Cube-Al library, a	chieving 78% accuracy at 25 FPS.
PUBLICATIONS		

- Han, T., Talia, S., **Panicker, R**., Shah, P., Jawale, N., & Boots, B. (2024). Dynamics Models in the Aggressive Off-Road Driving Regime. *arXiv preprint arXiv:2405.16487*.
- Sensor fusion between IMU and 2D LiDAR Odometry based on NDT-ICP algorithm for Real-Time Indoor 3D Mapping. TechRxiv.
- Tripathy, Shivam & **Panicker, Rohan** & Shrey, Shubh & Naik, Rutvik & Pachpore, Swanand. (2020). Voice Controlled Upper Body Exoskeleton: A Development For Industrial Application.

ACHIEVEMENTS

- Silver Medalist at the Nanotechnology, Sciences and Application competition held by IIT Madras in 2020.
- Achieved **3rd rank in Asia** in the SpaceX Hyperloop Pod Competition at the preliminary round 2018.